Clone
1
DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Antonia Rymer edited this page 2025-02-06 20:32:14 -06:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, wiki.dulovic.tech DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to enhance thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial identifying function is its support knowing (RL) action, which was utilized to refine the model's actions beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, eventually improving both relevance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, indicating it's geared up to break down complex inquiries and factor through them in a detailed way. This guided thinking procedure permits the design to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to produce structured actions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually recorded the industry's attention as a flexible text-generation model that can be integrated into numerous workflows such as agents, logical reasoning and data interpretation tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, enabling efficient inference by routing questions to the most pertinent expert "clusters." This approach allows the model to specialize in various problem domains while maintaining general efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient models to imitate the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this design with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and evaluate designs against essential safety criteria. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create numerous guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, improving user experiences and disgaeawiki.info standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation boost, produce a limit increase demand and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For directions, see Establish approvals to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid hazardous content, and evaluate designs against key safety requirements. You can execute security procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to evaluate user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.

The design detail page provides necessary details about the design's capabilities, prices structure, and application guidelines. You can discover detailed usage instructions, consisting of sample API calls and code bits for integration. The model supports numerous text generation jobs, consisting of material creation, code generation, and concern answering, using its support discovering optimization and CoT thinking abilities. The page likewise consists of deployment alternatives and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, fishtanklive.wiki get in a variety of instances (between 1-100). 6. For Instance type, choose your instance type. For optimal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can configure innovative security and facilities settings, consisting of cloud (VPC) networking, service role permissions, and file encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, you may desire to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the implementation is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive user interface where you can try out different prompts and adjust model specifications like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For instance, material for reasoning.

This is an excellent method to explore the design's thinking and text generation capabilities before integrating it into your applications. The play area supplies instant feedback, assisting you comprehend how the design responds to numerous inputs and letting you tweak your triggers for optimum outcomes.

You can quickly check the design in the play area through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends out a request to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers 2 practical methods: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to help you choose the technique that finest suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model browser shows available designs, with details like the provider name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card reveals key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), showing that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the design

    5. Choose the model card to see the model details page.

    The model details page includes the following details:

    - The design name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the model, it's suggested to review the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the immediately produced name or produce a custom one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the number of instances (default: 1). Selecting appropriate instance types and counts is essential for cost and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the model.

    The release process can take numerous minutes to finish.

    When release is complete, your endpoint status will alter to InService. At this point, the model is all set to accept inference demands through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the deployment is complete, you can conjure up the design utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the required AWS approvals and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid unwanted charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed implementations area, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the proper implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build ingenious services utilizing AWS services and sped up compute. Currently, he is concentrated on developing techniques for fine-tuning and enhancing the inference performance of large language designs. In his downtime, Vivek enjoys treking, enjoying films, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing services that assist customers accelerate their AI journey and wavedream.wiki unlock service worth.